
Therefore, the values found for the electrodynamic and thermal characteristics of a bi- 
conical cavity permit thedetermination of the greatest achievable level of microwave 
working power, the thermal rupture modes of the system, and also the correction to 
the magnitude of the cavity field because of the intrinsic fluctuating thermal radiation of 
the heated walls. The method proposed for the computation of the electromagnetic and ther- 
mal fields of a blconical cavity by using its partition into an approximate profile of ele- 
mentary inhomogeneities affords the possibility of finding the designated characteristics of 
a number of microwave units with arbitrary shape of the functional elements. 
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UNSTEADY HEAT LOSSES OF UNDERGROUND PIPELINES 

B. L. Krivoshein and V. M. Agapkin UDC 536.24.02 

Analytic expressions are presented for the unsteady temperature distribution of the 
ground and heat losses of an underground pipeline for an arbitrary variation of the 
temperature of the medium being transferred and boundary conditions of the third 
kind at the pipe wall and the surface of the ground. 

i. The design and operation of oil and gas pipelines require calculating the heat loss- 
es of a pipeline under unsteady heat-transfer conditions. Transient thermal processes arise 
in oil and gas pipelines in turning off oil heating stations and devices for air cooling of 
gas, stopping the transfer, starting up the pipeline, etc. These processes lower the per- 
formance of the system, increase the power expended, and may lead to fusion of the rust-in- 
hibiting insulation, a loss of longitudinal stability, and emergency stopping of transfer. 
To develop recommendations for ensuring reliable operation of gas and oil pipelines it is 
necessary to have available relations for calculating unsteady heat losses of pipelines. 

Solutions of the problem of Unsteady heat transfer between an underground pipeline and 
the surrounding medium have been obtained under a number of simplifying assumptions. A cor- 
relation of the papers on this problem is given in [i]. The most general result for large- 
diameter pipelines not far below the surface of the ground was obtained in [2]. However, the 
solution is given in the form of a double sum over eigenfunctions, which complicates its 
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practical employment. In addition, this solution converges slowly at the boundaries of the 
ground and does not take account of its natural temperature distribution. The present paper 
extends the work in [2] by performing additional investigations of the problem. 

2. To find unsteady heat losses of underground pipelines we consider the solution of 
the heat-conduction equation for the ground 

Ot --  agr ~ Ox 2 OY 2 " 

for the following boundary and initial conditions: 

OTgr/On = - - a , ( T - - ~ r ) / % g r  at r = R0; (2) 

OTgr/On = % o ( T g r - - r a e  )/~gr at y = O; (3 )  

O ~ y  ~ h o - - e o  . (4) 
%gr aTgr _ 0  at x = 0  { h a - - R 0 ~ Y < ~ 1 7 6  ' 

0x , ../ 

~ r  = r n a t  as x--~oo, y--+e~; (5) 

rg r ---- Tgro for t<0. (6) 

The validity of the assumptions used in writing Eqs. (1)-(6) is confirmed by experimen- 
tal studies on trunk pipelines and tests on models [3]: 

a) 

b) 

c) 

The ground is considered as a quasiuniform solid to which the equivalent thermal con- 
ductivity model [4] is applicable; 

the thermophysical properties of the ground are practically temperature independent 
in the range of transfer parameters considered; 

the heat flux transmitted by the medium along the pipeline is negligible in compari- 
son with the heat flux in the transverse direction; 

the pipeline is at a constant depth below the surface of the ground, d) 

In writing the boundary condition at the surface of the ground (3) the effect of solar 
radiation and reflected radiant flux is taken into account as in [4] by introducing a gener- 
alized coefficient of heat transfer aso from the surface of the ground to the atmosphere, 
and an equivalent air temperature Tae. 

3. Since Eq. (i) is linear we seek its solution as a sum of the natural temperature dis- 
tribution of the ground Tnat and the thermal perturbation Tpi caused by the pipeline: 

~r  = % a t  @Tpi" (7) 

The function Tpi = Tpi(X , y, t) is the solution of the equation 

Ot = agr \ Ox"- =- Oy ~" 

r =  Re; 

with the boundary conditions 

Orpi/On = - - a  1 (T - -  Tpi - -  Tnat )/Zg r - -  OTnat/On at 

O T p i / O y = ~ s o T p i % g r  at y = 0 ;  

~gr-0_TPi_= 0 at x = O  { O < y ~ h o - - R ~  
Ox ho - -  Ro ~ y < o o  ' 

T p i = 0  as x - . c o ,  g - + o o ;  

T p i = T g r o - T n a t  for t .~<0. 

The expression for Tnat = Tnat(X , y, t) is given in [i, 4]. 

We solve Eq. 
transformation [5] 

(la) 

(2a) 
(Sa) 

(4a) 

(ba) 

(6a) 

where 

(la) by using a system of bipolar coordinates obtained by the conformal 

x-@ iy = ci cth[0,5 (cr q- i~)], (8) 

x = c sin [~/(ch ~z - -  cos [~); y = c sh a / (ch a - -  cos ~); c = ~/h~ - -  Ro 2. 
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TABLE I. Heat Flux (W/m 2) Calculated by Analytic Formulas 
and by Numerical Modeling on a Computer 

t, h 0 20 40 60 80 100 120 140 160 

Calculated by computer 
By Eq. (12) 
R~lative error 
By Eq. (16) 
Relative error 
By Eq. (18) 
Relative error 

438,6 
435.7 
0,7 

168.2 
61,7 
176,7 
57,1 

167,8 
188,0 
8,5 

153,4 
8,6 

158,0 
5,9 

135,4 
151,0 
11,4 
140,9 
4,1 

142,6 
5,3 

120,7 
129,6 
7 , 3  

130,2 
7 , 9  

129,9 
7,6 

111,8 
116,1 
3,8 

121,2 
8,4 

119,4 
6,8 

105,7 
106,8 
l,l  

113,5 
7,4 

110,8 
4,8 

101,1 
100,0 
1,1 

106,9 
5,7 

103,6 
2,4 

97,6 
94,8 
2,9 

101,4 
3,8 

97,7 
0,1 

94,9 
90,6 
4,5 

96,6 
1,9 

92,0 
2,1 

where 

Since the mapping (8) is conformal, the Laplaeian operator in (la) 

OTpt/Ot = agrg" (O'Tpi t &zx -4- OZTpi /0~'). 
We rewrite the boundary conditions in the new coordinates in the form 

XgreOTpil&z = - - ~ l ( r - -  Tpi - - r n a t ) -  ~grgOTnatlOO~ for c~ - - a ~ ;  

� 8 9  = ~ , . r p i  for = = 0; 

%gr0Tpi I0~ = 0 for ~l = 0;  l~ = ~ ;  

ao = In [hdRo + t I (ho/Ro) ~ -  1]; g = (eh a - -  cos 11) c -  a. 

is invariant; i.e., 

(lb) 

(2b) 

(3b) 

( 4 b )  

Following [2] we linearize the variable coefficients in Eq. (Ib) and boundary conditions 
(2b) and (3b) in order to obtain an expression suitable for practical calculations. It will 
be shown below that such a linearization gives satisfactory results in the calculation of 
heat losses. 

After linearization Eqs. (Ib)-(45) take the form 

O~i lot = a~< ( O 2 r p i / o =  2 + O~Tpi /0~2); ( l c )  

OTpi,/Oa= B i ~ ( r - - r p i  - -Tnat  ) for ~ = ~o; (2c)  

OTpi/O~ = BizTpi ~r  a = 0; (3c)  

where 
Bil = aJC/X gr ch %; Bi 2 = u so C/~gr; a~r = a gr (1 + sh 2~o/4~o) c- ~. 

The s o l u t i o n  of  p r o b l e m  ( l c ) - ( 4 c ) ,  (6a)  i s  found  by t h e  K o s h l y a k o v - - G r i n b e r g  method  of  
finite integral transforms [6]. The kernel of the transformation with respect to the variable 
a for the Sturm--Liouville problem under consideration has the form 

Kn(o% ~n)=C~ I (c~ r + Bizs in t t~a) ,  (9) 
tq  

where the normalization factor C n is 

Cn=_~_~o .(1 + --~-~ } +Bi22~ sin 2~n~~ _ ( 1 -  --~-n ) + - B i 2 2 ~  Bi~ sin~ ~ ~  (9a)  

The eigenvalues of the problem ]am are the positive roots of the characteristic equation 

ctg I~,,cto = (Vn 2 - -  BilBi2)[l% (Bi I + Bi~)] -1. (9b) 

Taking the integral transform in the interval 0 ~-~ ~-So with the kernel (9), solving 
the representative equation, taking the inverse transform, and improving the convergence of 
the series by the Grinberg method [7], we obtain the solution of problem (ic), (2c)-(4c), 
(6a) in the form 

Tg r (a, ~, t)---- Tgr + ~ X {Toexp(--ag# ~t)'+ 
n = l  

t 

+ .i ( T  - -  ) e x p  (t - -  - -  
0 

--A~ (T -- Tnat) tl~ -2} K~ (r }tn), (10) 
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6r o 

where the function To = J' (Tgro --Tnat)CnKn(a, ~n)da is equal to zero (startup of pipeline 
0 

after construction is completed or after a long shutdown) or @o = Bit(To --Tnato)(~ + Bi~). 
2 2 - -  1 

cOS~nao [~n(~n BitBia) ]- (change of transfer conditions) ; Tqu is the temperature of the ground 

in a quasisteady thermal state, Tqu = Tnat + Bit(l + ~Bia)(T- Tnato)[Bix(l + ~oBi2) + Bia]-x; 
A n = Bit(~ + Bi~)(~- BitBi:)-IEOS~naO. 

By using Eq. (i0) the unsteady temperature distribution of the ground can be found for 
an arbitrary variation of the temperature of the medium being transferred T = T(t) and the 
natural temperature distribution in the ground Tnat = Tnat(X , t) for boundary conditions of 
the third kind at the pipe wall and the surface of the ground. 

Using Fourier's law we determine the change in heat flux around the perimeter of the 
pipe from (i0): 

OTgr [ ch % -- cos 13 { 6c 1 - -  ch ifo cos/3 
4 = ~grg ~ [~=a.---- ~gr c . (ch a o - -  cos/3)2 q- 

t 

(T -- Tnato) BilBi2 ~_ ~ , [ -  ~ [ + 
Bil(1 -4- ifo Bi2) + Biz ,(,~LT~ *ru~t) -~-ae,." (7"-- 

J 
11== 1 g 

- -  Tnato) A, exn [ - -a  *u 2 ] ~ -gw~(t--  x)] d r - - ( T - -  Tnato ) A.~x7 2 K: (ao, ~t.) (11)  

and its average over the perimeter 
.q 

l I~ O__Tgi_d/3 = #qu. ~_ ~gr ~ [ ~ o e x p ( _ ~ 9 ~ t ) q _  q 
2~rRo ,~ aif Ro 

t 

"~ [ (T - -  Tnato) A,, exp [--a#_t~ 2 (l - -  x)] dv - -  (T - -  Znato ) ~tn2 ] K' n (ifo, [xn), (12)  
+ ag.~ o 

�9 ~ f  tZ 

where ~ is the gradient of the natural temperature distribution of the ground, and qqu mea- 
sures the heat losses of an oil line during quasisteady heat transfer: 

qqu = ~'gr( T --Tnato)BilBizRo ~ [Bil (1 + ifoBiz) -+- Bi2]-~; 

K~ (ifo, ~ )  = ( Bi2 q- 2Bi~Bi2 - -  la~)(Bi~ -J- Bi~)-~C~ -~. 

A solution more convenient for practical applications can be obtained by the Bubnov-- 
Galerkin method [8]. We write the solution of problem (ib), (2b)-(4b), (6a) as the finite 
sum 

N 

= + ( 1 3 )  

i n  w h i c h  t h e  f u n c t i o n s  ~ ( a ,  13) and q~n(a,  13) a r e  c h o s e n  so  a s  t o  s a t i s f y  b o u n d a r y  c o n d i t i o n s  
(2b)-(4b). Requiring that R(a, 13, C,, ..., C n) = ga(a, 8)(3aTpi/3a a + ~aTpi/3Ba) --a~Tpi/ 
3t be orthogonal to all the functions {~n(a, 8)} leads to the system of algebraic equations 

S o 

,! . . . . .  (if, d aif = 0 = 1, 2 . . . . .  N).  ( 1 4 )  

L i m i t i n g  o u r s e l v e s  to  t h e  f i r s t  t e r m  (N = l )  i n  (14)  and d e t e r m i n i n g  C x ( t ) ,  we o b t a i n  
t h e  s o l u t i o n  o f  ( l b ) ,  ( 2 b ) - ( 4 b ) ,  (6a )  i n  t h e  fo rm  

Tg r (~z,/3, t) = Tqu q- B~z (% - -  c0(ch ~o + cos/3)(oh % -{- q~)-I - -  
t 

--agr?Bif  (%--if)(ch if0 + cos ~)(ch if0 + qb)- ~[ 0 (x) exp [--arp? (t - -  x)] d~, (15)  
0 

w h e r e  
B = 2,5Bi~(2 q- aoBiz) aS  e IBis(1 q- ifoBiz) - /Biz]-x;  

?= lOa~c-Z--~ cPc-Z(chifo-q-6P)-~; r (5a0- -3sh2a0) .  [2ch%(4ao + sh2ifo)--8sh~]; 

0 = T -- To f o r  a c h a n g e  i n  t h e  t r a n s f e r  c o n d i t i o n s ,  and 0 = T -- Tna to  f o r  s t a r t i n g  up t h e  
p i p e l i n e .  T a k i n g  a c c o u n t  o f  (15)  t h e  e x p r e s s i o n  f o r  h e a t  l o s s e s  t a k e s  t h e  fo rm  
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C 

Fig. i. Change in temperature of the ground at points with coordinates a = 0.45~, 
8 = 7 (a), a = 0.457, 8 = 0.57 (b), and ~ = 0.457, 8 = 0 (c): i) by Eq. (15); 2) 
numerical solution; 3) by Eq. (17); 4) by Eq. (I0). 

~gr B0~ o ch ~o 

q = qqu + ~Ro (ch % + qb) 

~rBo% ch 0% 

eo ich 

t 

S 0 exp [--agrl, (t -- I:)1 dx. 
0 

(16) 

The solution of the linearized equations (ic), 
way by t h e  Bubnov--  G a l e r k i n  me thod :  

t 

Tgr (~, ~, t) ~= ~u  + B 0 ~  (~o - -  ~) - -  10%~B~ (~o --~) ~ 0 exp [ "  10%~ (t - -  x)] d% _ 
fi 

t 

q = qqu + OB%R;'-- lOa~rB~oRo -1 ,!' Oexp t--lOa$ (t-- x)l dx. 

(2c)-(4c), (6a) is found in a similar 

(17) 

(18) 

In the limiting case as t § = the solutions (10)-(12), (15)-(18) correspond to steady 
heat exchange of an underground pipeline with the surrounding medium [9]. 

4. To estimate the accuracy of the solutions obtained above, calculations made with 
Eqs. (I0), (12), (15)-(18) were compared with the results of a numerical integration of Eqs. 
(1)-(6) for a stepwise change AT = 400C of the temperature of the medium being transferred, 
using the values Ro = 0.7 m, ho = 1.7 m, %gr = i W/m.deg, a, = 500 W/m2.deg, aSo = i0 W/m2.deg, 

and Tnato = 9.3~ 

The temperatures calculated at various points in the ground around the pipeline are 
shown in Fig. i. Analysis shows that there is better agreement Between results calculated 
by the analytic formulas with those from numerical modeling on a computer at points on the 
level of the pipeline axis (8 = 0.5~). At points above and below the pipe the differences 
between the values calculated by computer and by Eqs. (i0) and (17) are considerably greater, 
reaching 60C. The temperatures of the ground calculated by Eqs. (i0) and (17) are higher 
than the computer values for points under the pipe (8 = ~) and lower at points above the 
pipe (8 = 0), with these differences having nearly the same absolute value. This is related 
to the nature of the linearization of the coefficient g(a, 8) in (ib). The approximate so- 
lution (15) of nonlinearized equation (ib) gives better agreement with the computer calcula- 
tion than (17) does. The error in (15) and (17) at zero time results from retaining only 
the first term of the sum in (13). 

The calculated heat losses of an underground pipeline q are shown in Table i. The dif- 
ferences between values of q calculated by Eq. (13) and by computer areless than 10%. The 
error in Eqs. (16) and (18) is close to 10% for times t~ 20 h. The total time of the study 
of the unsteady process was more than a month. For small values of the time (t < 20 h) the 
errors of (16) and (18) reach 60%. Therefore, for such times the heat losses must be deter- 
mined by Eq. (13); for large times the heat losses can be determined by (18), since it gives 
the same accuracy and is more convenient than (13) and (16). 

NOTATION 

Tgr, temperature of ground; Tnat, temperature of ground in natural state; Tgro, initial 
distributi0n of ground temperature; Tnato , ground temperature at level of pipeline axis in 
natural thermal state; T, temperature of medium being transferred; To, temperature of medium 
being transferred at zero time; Tae, equivalent air temperature; agr, kg r, thermal diffusivity 
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and thermal conductivity of ground; ~I, coefficient of heat transfer from medium being trans- 
ferred to pipe wall; ~so, generalized coefficient of heat transfer from surface to atmosphere; 
Ro, pipe radius; ho, depth of pipe axis below ground; t, time; x, y, Cartesian coordinates; 
~, B, bipolar coordinates. 
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METHOD OF COMPUTING THE HEAT INFLUXES OVER ELECTRICAL 

CABLES IN CRYOGENIC SYSTEMS 

S. Ya. Milevskii and G. A. Topunov UDC 621.59:536.33:621.315.2 

A method is proposed for computing the heat influx over electrical cables taking ac- 
count of the dependence of the thermal conductivity of copper on the temperature and 
radiative heat exchange of the cable and the surrounding surfaces. 

One of the fundamental requirements imposed on cryogenic systems is a minimum of exter- 
nal heat influx. 

At the same time, a unit of temperature sensors is usually required for checking out 
and controlling the operation of the system elements. The heat influx over the cables can 
exert a considerable influence on both the system characteristics and on the readings of the 
sensors themselves because of the high thermal conductivity of copper, especially at tem- 
peratures below 30~ 

Meanwhile, it is usually customary to consider the heat influx over the conductors com- 
prising the cable as though over rods heat-insulated from the side surface, with a constant 
magnitude of the thermal conductivity, which results in a multiple reduction of the true heat 
influx, as experiments have shown. As a rule, the low-temperature elements of cryogenic sys- 
tems are in a vacuum; hence, heat flux by radiation from the surrounding walls proceeds to 
the side surface of the cable. If Joule heating is neglected because of the smallness of 
the measuring current through the sensor, the heat-transfer differential equation for the 
cable can be written in the form 
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